Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Iran J Public Health ; 53(1): 1-11, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38694869

RESUMEN

Background: Influenza is the first infectious disease that implements global monitoring and is one of the major public health issues in the world. Air pollutants have become an important global public health issue, in recent years, and much epidemiological and clinical evidence has shown that air pollutants are associated with respiratory diseases. Methods: We comprehensively searched articles published up to 15 November 2022 in PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Database of Chinese sci-tech periodicals, and Wanfang Database. The search strategies were based on keyword combinations related to influenza and air pollutants. The air pollutants included particulate matter (PM2.5, PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and ozone (O3). Meta-analysis was performed using the R programming language (R4.2.1). Results: A total of 2926 records were identified and 1220 duplicates were excluded. Finally, 19 studies were included in the meta-analysis according to inclusion and exclusion criteria. We observed a significant association between partial air pollutants (PM2.5, NO2, PM10 and SO2) and the incidence risk of influenza. The RRs were 1.0221 (95% CI: 1.0093~1.0352), 1.0395 (95% CI: 1.0131~1.0666), 1.007 (95% CI: 1.0009~1.0132), and 1.0352 (95% CI. 1.0076~1.0635), respectively. However, there was no significant relationship between CO and O3 exposure and influenza, and the RRs were 1.2272 (95% CI: 0.9253~1.6275) and 1.0045 (95% CI: 0.9930~1.0160), respectively. Conclusion: Exposure to PM2.5, NO2, PM10, and SO2 was significantly associated with influenza, which may be risk factors for influenza. The association of CO and O3 with influenza needs further investigation.

2.
Oncol Rep ; 51(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38275105

RESUMEN

Following the publication of the above article, the authors drew to our attention that they had made a couple of inadvertent errors in assembling Figs. 4 and 5; first, for the BT­549 cell line, the data shown for the Pro­caspase­1/Cleaved caspase­1 in Fig. 5 and the GSDMD­F/GSDMD­N data in Fig. 4B were identical, and had been derived from the same original source; secondly, in Fig. 4A, the data shown correctly for the GSDMD BT­549 cell line had also inadvertently been included in this figure to represent the MDA­MB­231 cell line. The revised and corrected versions of Figs. 4 and 5, showing the correct western blotting data for the GSDMD experiment in Fig. 4A and the Pro­caspase­1/Cleaved caspase­1 data for the BT­549 cell line in Fig. 5, are shown in the next two pages. The authors regret that these errors in the assembly of Figs. 4 and 5 went unnoticed before the article was published, and thank the Editor of Oncology Reports for granting them the opportunity to publish this corrigendum. All the authors agree with the publication of this corrigendum; furthermore, they apologize to the readership of the journal for any inconvenience caused.[Oncology Reports 50: 188, 2023; DOI: 10.3892/or.2023.8625].

3.
Anal Biochem ; 682: 115332, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37816419

RESUMEN

Sepsis is a major contributor to the death of critically ill patients globally, in which metabolic disturbance is observed. Xuebijing injection (XBJ), a well-known traditional Chinese medicine, has received approval by the State Food and Drug Administration (SFDA) of China owing to its satisfactory clinical therapeutic effect. Nowadays, it has been applied clinically to the treatment of sepsis, but its effect on metabolic disorders remains unclear. In the present study, we sought to explore its underlying mechanism by employing a combination of network pharmacology and metabolomics. Initially, its protective effects were validated using a sepsis rat model created through cecal ligation puncture (CLP). Subsequently, the metabonomic strategy was utilized to discriminate the differential metabolic markers. Meanwhile, a comprehensive view of the potential ingredient-target-disease network was constructed based on a network pharmacology analysis. Next, the network diagram was constructed by integrating the results of network pharmacology and metabonomics. Finally, qRT-PCR together with Western blot was used to validate the expression levels of the associated genes. Based on our findings, we identified 34 differential metabolites in the sepsis group and 26 distinct metabolites in the XBJ group, with 8 common biological metabolites predominantly associated with arginine and proline metabolism. Through comprehensive analysis, we identified 21 genes that regulate metabolites, and qRT-PCR validation was conducted on six of these genes in both liver and kidney tissues. Additionally, XBJ demonstrated the capability to inhibit the activation of the NF-kB signaling pathway in both liver and kidney tissues, leading to a reduction in the occurrence of inflammatory responses. In summary, our study has validated the complexity of the natural compounds within XBJ and elucidated their potential mechanisms for addressing CLP-induced metabolic disturbances. This work contributes to our understanding of the bioactive compounds and their associated targets, providing insights into the potential molecular mechanisms involved.


Asunto(s)
Medicamentos Herbarios Chinos , Sepsis , Humanos , Ratas , Animales , Farmacología en Red , Ratas Sprague-Dawley , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Metabolómica/métodos
4.
Biomed Pharmacother ; 168: 115659, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37864896

RESUMEN

The anti-tumoral effects of metformin have been widely studied in several types of cancer, including thyroid cancer; however, the underlying molecular mechanisms remain poorly understood. As an oral hypoglycemic drug, metformin facilitates glucose catabolism and disrupts metabolic homeostasis. Metabolic reprogramming, particularly cellular glucose metabolism, is an important characteristic of malignant tumors. This study aimed to explore the therapeutic effects of metformin in thyroid cancer and the underlying metabolic mechanism. In the present study, it was shown that metformin reduced cell viability, invasion, migration, and EMT, and induced apoptosis and cell cycle G1 phase arrest in thyroid cancer. Transcriptome analysis demonstrated that the differentially expressed genes induced by metformin were involved in several signaling pathways including apoptosis singling pathways, TGF-ß signaling, and cell cycle regulation in human thyroid cancer cell lines. In addition, the helicase activity of the CDC45-MCM2-7-GINS complex and DNA replication related genes such as RPA2, RAD51, and PCNA were downregulated in metformin-treated thyroid cancer cells. Moreover, metabolomics analysis showed that metformin-induced significant alterations in metabolic pathways such as glutathione metabolism and polyamine synthesis. Integrative analysis of transcriptomes and metabolomics revealed that metformin suppressed glycolysis by downregulating the key glycolytic enzymes LDHA and PKM2 and upregulating IDH1 expression in thyroid cancer. Furthermore, the anti-tumor role of metformin in thyroid cancer in vivo was shown. Together these results show that metformin plays an anti-tumor role by inhibiting glycolysis and restraining DNA replication in thyroid cancer.


Asunto(s)
Metformina , Neoplasias de la Tiroides , Humanos , Metformina/farmacología , Transcriptoma , Línea Celular Tumoral , Glucólisis , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Perfilación de la Expresión Génica , Replicación del ADN , Proliferación Celular
5.
Oncol Rep ; 50(4)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37681500

RESUMEN

Azurocidin 1 (AZU1) is a heparin­binding protein which has been reported to be aberrantly expressed in various tumors, but its definite role in breast cancer (BC) has not been clarified. The aim of the present study was to explore the associations between AZU1 and BC. In the present study, bioinformatics and western blot analyses were applied to detect the expression level of AZU1 in BC tissues. The effect of AZU1 on cell proliferation and apoptosis was analyzed using Cell Counting Kit­8 assay, colony formation assay and flow cytometry. Based on bioinformatics analysis, AZU1 exhibited low expression in tissues and was negatively associated with the survival rate of patients with triple­negative BC (TNBC). Exogenous AZU1 stimuli significantly inhibited the proliferation and colony formation of TNBC cell lines. Furthermore, the data of flow cytometry revealed that exogenous AZU1 stimuli enhanced apoptosis in MDA­231 and BT­549 cells. As pyroptosis is a new type of cell death, the effects AZU1 played on the expression of gasdermin D (GSDMD), a specific biomarker of pyroptosis, were also investigated. The findings of the present study revealed that GSDMD, as well as its upstream regulators [NF­κB, NLR family pyrin domain containing 3 (NLRP3) and caspase­1], were significantly increased in TNBC cell lines when treated with exogenous AZU1, indicating that AZU1 contributed to the inhibition of pyroptosis of TNBC cell lines through the NF­κB/NLRP3/caspase­1 axis. Collectively, it was revealed for the first time, that AZU1 exposure promoted pyroptosis through the modulation of the pNF­κB/NLRP3/caspase­1/GSDMD axis in TNBC in vitro. The findings of the present study unveiled a novel mechanism of AZU1­induced pyroptosis in TNBC, which may aid in developing new strategies for therapeutic interventions in TNBC. breast cancer is the most commone form of cancer in women and is second only to lung cancer in terms of cancer­related mortality.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/genética , Piroptosis , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Caspasa 1 , Proliferación Celular
6.
Nutrients ; 15(15)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37571423

RESUMEN

This study aimed to provide a more comprehensive molecular insight into the effects of aerobic exercise (AE), protein intake (PI), and AE combined with PI on human skeletal muscle by comparing their transcriptomic profiles. Fourteen published datasets obtained from the Gene Expression Omnibus (GEO) database were used. The hub genes were identified in response to acute AE (ACTB, IL6), training AE (UBB, COL1A1), PI (EZH2), acute AE combined with PI (DDIT3), and training AE combined with PI (MYC). Both FOS and MYC were upregulated in response to acute AE, and they were, respectively, downregulated by higher PI and a combination of AE and PI. COL1A1 was upregulated by training AE but was downregulated by higher PI. Results from the gene set enrichment analysis (p < 0.05 and FDR < 25%) showed that AE and PI delivered their impacts on human skeletal muscle in analogous pathways, including aerobic respiration, mitochondrial complexes, extracellular matrix (ECM) remodeling, metabolic process, and immune/inflammatory responses, whereas, PI may attenuate the response of immune/inflammation and ECM remodeling which would be promoted by AE, irrespective of its types. Compared to PI alone, acute AE combined with PI would further promote protein turnover and synthesis, but suppress skeletal muscle contraction and movement.


Asunto(s)
Entrenamiento de Fuerza , Transcriptoma , Humanos , Entrenamiento de Fuerza/métodos , Músculo Esquelético/metabolismo , Ejercicio Físico/fisiología , Perfilación de la Expresión Génica
7.
Toxicol Res (Camb) ; 12(3): 527-538, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37397915

RESUMEN

Objective: Paraquat (PQ) is a toxic compound that selectively accumulates in the lungs, inducing severe pulmonary inflammation and fibrosis. However, data on the metabolomic changes induced by the PQ remain scant. This study aimed to determine the metabolic changes in Sprague-Dawley rats subjected to PQ using UPLC-Q-TOF-MS/MS. Methods: We established groups of PQ-induced pulmonary injury rats for 14 or 28 days. Results: Our data showed that PQ decreased the survival of the rats and induced pulmonary inflammation at day 14 or pulmonary fibrosis at day 28. There was upregulation of IL-1ß expression in the inflammation group as well as upregulation of fibronectin, collagen and α-SMA in the pulmonary fibrosis group. OPLS-DA revealed differential expression of 26 metabotites between the normal and the inflammation groups; 31 plasma metabotites were also differently expressed between the normal and the fibrosis groups. There was high expression of lysoPc160-, hydroxybutyrylcarnitine, stearic acid, and imidazolelactic acid in the pulmonary injury group compared to the normal group. Conclusion: Metabolomics analysis confirmed that the PQ-induced lung injury was not only related to the aggravation of inflammation and apoptosis but also to mediated histidine, serine, glycerophospholipid, and lipid metabolism. This study gives insights into the mechanisms of PQ-induced lung injury and highlights the potential therapeutic targets. Nonstructured abstract: The effect of PQ on lung injury in rats was detected by metabonomics, and the possible metabolic mechanism was investigated by KEGG analysis. OPLS-DA revealed the differential expression of 26 metabotites and 31 plasma metabotites between the normal and the pulmonary injury groups. Metabolomics analysis confirmed that the PQ-induced lung injury was not only related to the aggravation of inflammation and apoptosis but also to mediated histidine, serine, glycerophospholipid, and lipid metabolism. Oleoylethanolamine, stearic acid, and imidazolelactic acid are potential molecular markers in PQ-induced pulmonary injury.

8.
Cell Signal ; 109: 110792, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37406787

RESUMEN

OBJECTIVES: miR-142-3P is a tumor suppressor in various malignant cancers. However, the function of miR-142-3P in papillary thyroid carcinoma (PTC) remains to be elucidated. The aim of this study was to explore the function and mechanism of miR-142-3P in PTC. METHODS: Real Time Quantitative PCR (RT-qPCR) was used to assess the expression of miR-142-3P and Fibronectin 1 (FN1) in PTC. The correlation between FN1 and miR-142-3P expression was analyzed by Spearman's correlation analysis. Cell Counting Kit 8 (CCK8), 5-ethynyl-2'-deoxyuridine (EDU) assay, cell migration and invasion assay and wound healing measures evaluated the effect of miR-142-3P and FN1 on cell proliferation, migration and invasion. Dural Luciferase reported gene assay evaluated the interaction between miR-142-3P and 3' untranslated region (UTR) of FN1. The Epithelial-Mesenchymal-Transition (EMT) and apoptosis related marker genes were measured using western blot analysis (WB). RESULTS: miR-142-3P was significantly decreased in both PTC specimens and relevant cell lines. Functionally, miR-142-3P inhibited cell proliferation, migration, invasion and EMT, and induced the cell apoptosis in PTC. In addition, miR-142-3P bound directly with 3' UTR of FN1 and negatively regulated the expression of FN1 in PTC. FN1 expression is elevated in PTC, and its aberrant high correlated with declines in recurrence-free survival (RFS). Moreover, FN1 promoted cell proliferation, migration, invasion and EMT, induced cell apoptosis in PTC cells. Depletion of FN1 rescues the effect of miR-142-3P inhibitor on cell proliferation, invasion, apoptosis and EMT via inactivating Focal Adhesion Kinase (FAK)/Extracellular Signal-Regulated Kinase (ERK) / Phosphoinostide 3-kinase (P13K) signaling. CONCLUSION: miR-142-3P suppressed cell proliferation, migration, invasion and EMT through modulating FN1/FAK/ERK/PI3K signaling in PTC, suggesting it as a potential therapeutic target for PTC.


Asunto(s)
MicroARNs , Neoplasias de la Tiroides , Humanos , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/metabolismo , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Tiroides/patología , Fibronectinas/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica
9.
Heliyon ; 9(6): e16247, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37274716

RESUMEN

Cardiac arrest (CA) is a severe worldwide health problem. Therapeutic hypothermia is widely used to reduce the cardiac injury and improve the neurological outcomes after CA. However, a few studies have reported the changes of serum metabolic characteristics after CA. The healthy male New Zealand Rabbits successfully resuscitated from 10-min asphyxia-induced CA were divided randomly into the normothermia (NT) group and mild therapeutic hypothermia (HT) group. The sham group underwent sham-operation. Survival was recorded and neurological deficit score (NDS) was assessed. The serum non-targeted metabolomics were detected using ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) and gas chromatography tandem mass spectrometry (GC-MS/MS) at 15 min, 3 h, 6 h and 24 h after return of spontaneous circulation (ROSC). Our study showed that the heart rate (HR) significantly slowed down during 0.5-6 h post ROSC, consistent with the decreasing trend of body temperature in the HT group. Compared with the NT group, the levels of Lac and PCO2 at 24 h post ROSC were lower, while a significant increase in PO2 level at 24 h post ROSC was observed in the HT group. The survival rate of the HT group was significantly higher than that of the NT group, and NDS scores were remarkably increased at 24 h post ROSC in the NT group. Significant differences in metabolic profiles at 15 min, 3 h, 6 h and 24 h post ROSC were observed among the Sham, NT and HT groups. The differential metabolites detected by UPLC-Q-TOF-MS/MS and GC-MS/MS were screened for further study between every two groups (NT vs sham, HT vs sham and HT vs NT) at 15 min, 3 h, 6 h and 24 h post ROSC. Phenylalanine metabolism, alanine, aspartate and glutamate metabolism and tricarboxylic acid (TCA) cycle were enriched in NT vs sham, HT vs sham and HT vs NT respectively. Our study demonstrated that therapeutic hypothermia improves the survival and neurological outcomes in rabbit model of cardiac arrest, and firstly represents the dynamic metabolic changes in the hypothermia therapy for CA by comprehensive UPLC-Q-TOF-MS/MS- and GC-MS/MS-based metabolomics.

10.
Eur J Mass Spectrom (Chichester) ; 29(3): 159-169, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37338428

RESUMEN

The objective of this study is to gain insights into the underlying metabolic transformations that occurred during the whole progression of cecal ligation and puncture (CLP)-induced sepsis, thus providing new targets for its treatment. High-performance liquid chromatography of quadrupole time of flight mass spectrometry (HPLC-Q-TOF-MS/MS) combined with multivariate statistical techniques was used to detect the s in serum from septic mice. Fifty male mice were divided into two groups, including the sham group (n = 7) and the CLP-induced sepsis group (n = 43). Animals were sacrificed at 1, 3, 5, and 7 days post-CLP and then serum were collected for metabolomic analysis. Multivariate regression analysis was carried out through MetaboAnalyst 5.0, including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), to identify the s and screen out the related differential metabolites. Besides, the KEGG pathway analysis was used to analyze the related metabolic pathways in which the identified metabolites were involved. Based on the fold change (FC > 2.0 or <0.5), variable important in projection (VIP > 1.2), and P value (P < 0.05), we found 26, 17, 21, and 17 metabolites in septic mice at 1, 3, 5, and 7 days post-CLP, respectively, compared with that of the sham group. The PCA and PLS-DA pattern recognition showed a cluster-type distribution between the sham group and the CLP group. Dysregulated amino acid metabolism, as well as disturbed nucleotide metabolism, is observed. Several important metabolic pathways were identified between the sham group and the CLP group. Among them, phenylalanine metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis showed striking at day 1 post-CLP. At day 3, phenylalanine, tyrosine, and tryptophan biosynthesis changed significantly. However, as the disease process, only pyrimidine metabolism showed the most significant alternation, compared to the sham group. Several differential metabolites were identified in the CLP group compared with that of the sham group and they were presented with dynamic alternation at different time points post-CLP, indicating metabolic disturbance occurred throughout the whole sepsis progression.


Asunto(s)
Sepsis , Espectrometría de Masas en Tándem , Ratones , Masculino , Animales , Cromatografía Líquida de Alta Presión , Triptófano , Metabolómica/métodos , Sepsis/metabolismo , Tirosina , Fenilalanina , Biomarcadores
12.
Toxicon ; 230: 107153, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37178797

RESUMEN

Amatoxin poisoning leads to over 90% of deaths in mushroom poisoning. The objective of present study was to identify the potential metabolic biomarkers for early diagnosis of amatoxin poisoning. Serum samples were collected from 61 patients with amatoxin poisoning and 61 healthy controls. An untargeted metabolomics analysis was performed using the ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS). Multivariate statistical analysis revealed that the patients with amatoxin poisoning could be clearly separated from healthy controls on the basis of their metabolic fingerprints. There were 33 differential metabolites including 15 metabolites up-regulated metabolites and 18 down-regulated metabolites in patients with amatoxin poisoning compared to healthy controls. These metabolites mainly enriched in the lipid metabolism and amino acid metabolism pathways, such as Glycerophospholipid metabolism, Sphingolipid metabolism, Phenylalanine tyrosine and typtophan biosynthesis, Tyrosine metabolism, Arginine and proline metabolism, which may serve important roles in the amatoxin poisoning. Among the differential metabolites, a total of 8 significant metabolic markers were identified for discriminating patients with amatoxin poisoning from healthy controls, including Glycochenodeoxycholate-3-sulfate (GCDCA-S), 11-Oxo-androsterone glucuronide, Neomenthol-glucuronide, Dehydroisoandrosterone 3-glucuronide, Glucose 6-phosphate (G6P), Lanthionine ketimine, Glycerophosphocholine (GPC) and Nicotinamide ribotide, which achieved satisfactory diagnostic accuracy (AUC>0.8) in both discovery and validation cohorts. Strikingly, the Pearson's correlation analysis indicated that 11-Oxo-androsterone glucuronide, G6P and GCDCA-S were positively correlated with the liver injury induced by amatoxin poisoning. The findings of the current study may provide insight into the pathological mechanism of amatoxin poisoning and screened out the reliable metabolic biomarkers to contribute the clinical early diagnosis of amatoxin poisoning.


Asunto(s)
Glucurónidos , Espectrometría de Masas en Tándem , Humanos , Metabolómica/métodos , Cromatografía Líquida de Alta Presión/métodos , Biomarcadores , Tirosina
13.
Chin Med ; 18(1): 39, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37062835

RESUMEN

BACKGROUND: Sepsis is a life-threatening organ dysfunction caused by dysregulated host responses to infection, for which effective therapeutic strategies are still absent. Shengjiang San (SJS), a well-known Traditional Chinese Medicine formula, has been widely used clinically. However, its role in sepsis-induced lung injury remains unclear. METHODS: To explore its specific mechanism, we firstly established a sepsis animal model using cecal ligation and puncture (CLP) and treated MH-S cells with LPS plus ATP. Then, UPLC/Q-TOF-MS/MS was utilized to identify its active ingredients. Network pharmacology analysis was performed to uncover the potential mechanism. HE staining and biochemical analysis were conducted to validate its therapeutic effect. ELISA was applied to detect the release of pro-inflammatory and anti-inflammatory cytokines. Western blot was utilized to detect the protein levels of GSDMD, NLRP3, P65, ASC and caspase-1. RESULTS: SJS could dramatically increase the survival rate of sepsis. In addition, it is able to inhibit the pro-inflammatory cytokines release at day 1 post CLP while promote their production at day 7, indicating SJS could attenuate uncontrolled inflammatory response in the early stage and improve immunosuppression in the late phase. Network pharmacology analysis showed that pyroptosis is the crucial action SJS exerted in the protection of sepsis-induced lung injury. Western blot data implicated SJS could attenuate pyroptosis in early sepsis while enhance in the late phase. CONCLUSIONS: SJS acted to alleviate sepsis-induced lung injury through its bidirectional regulatory effect.

14.
Cancer Biomark ; 36(4): 299-311, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36938729

RESUMEN

BACKGROUND: Regulatory T cells (Tregs) are central to determine immune response, thus targeting Tregs for immunotherapy is a promising strategy against tumor development and metastasis. OBJECTIVES: The objective of this study was to identify genes for targeting Tregs to improve the outcome of HCC. METHODS: We integrated expression data from different samples to remove batch effects and further applied embedding function in Scanpy to conduct sub-clustering of CD4+ T cells in HCC for each of two independent scRNA-seq data. The activity of transcription factors (TFs) was inferred by DoRothEA. Gene expression network analysis was performed in WGCNA R package. We finally used R packages (survminer and survival) to conduct survival analysis. Multiplex immunofluorescence analysis was performed to validate the result from bioinformatic analyses. RESULTS: We found that regulator of G protein signaling 1 (RGS1) expression was significantly elevated in Tregs compared to other CD4+ T cells in two independent public scRNA-seq datasets, and increased RGS1 predicted inferior clinical outcome of HCC patients. Multiplex immunofluorescence analysis supported that the higher expression of RGS1 in HCC Tregs in tumor tissue compared to it in adjacent tissue. Moreover, RGS1 expression in Tregs was positively correlated with the expression of marker genes of Tregs, C-X-C chemokine receptor 4 (CXCR4), and three CXCR4-dependent genes in both scRNA-seq and bulk RNA-seq data. We further identified that these three genes were selectively expressed in Tregs as compared to other CD4+ T cells. The activities of two transcription factors, recombination signal binding protein for immunoglobulin kappa J region (RBPJ) and yin yang 1 (YY1), were significantly different in HCC Tregs with RGS1 high and RGS1 low. CONCLUSIONS: Our findings suggested that RGS1 may regulate Treg function possibly through CXCR4 signaling and RGS1 could be a potential target to improve responses for immunotherapy in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas RGS , Humanos , Carcinoma Hepatocelular/metabolismo , Proteínas de Unión al GTP , Neoplasias Hepáticas/metabolismo , Análisis de Expresión Génica de una Sola Célula , Linfocitos T Reguladores , Proteínas RGS/metabolismo
16.
Front Endocrinol (Lausanne) ; 13: 995972, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246907

RESUMEN

Glucose-6-phosphate isomerase (GPI) plays an important part in gluconeogenesis and glycolysis through the interconversion of d-glucose-6-phosphate and d-fructose-6-phosphate, and its clinical significance still remains unclear in breast cancer (BRCA). We analyzed the expressions of GPI in BRCA patients to determine prognostic values. Our results showed that the expression levels of GPI were upregulated in BRCA patients, and a high GPI expression is correlated with poor overall survival (OS) in BRCA. At the same time, a high GPI expression is correlated with poor clinicopathological characteristics, such as stage III, over 60 years old, N3, HER2 negative, and estrogen receptor (ER) positive. Further analysis of the influence of GPI on the prognosis of BRCA suggested that 50 genes and 10 proteins were positively correlated with GPI, and these genes and proteins were mainly involved in cell cycle signaling pathways. In addition, in this study, we observed that GPI was closely related to N 6-methyladenosine (m6A) RNA methylation modification and immune cell infiltration and ferroptosis-related gene expression in BRCA, and there was a difference in m6A RNA methylation alterations, immune cell infiltration, and ferroptosis-related gene expression between the high GPI expression group and the low GPI expression group. Finally, we found that GPI in BRCA had 2.6% gene alterations, and BRCA patients with gene alteration of GPI had a poor prognosis in disease-free survival (DFS). Altogether, our work strongly suggested that GPI may serve as a new prognostic biomarker for BRCA patients.


Asunto(s)
Neoplasias de la Mama , Biomarcadores , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Femenino , Glucosa-6-Fosfato , Glucosa-6-Fosfato Isomerasa/análisis , Glucosa-6-Fosfato Isomerasa/genética , Glucosa-6-Fosfato Isomerasa/metabolismo , Humanos , Persona de Mediana Edad , Pronóstico , ARN , Receptores de Estrógenos
17.
Gland Surg ; 11(7): 1204-1211, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35935559

RESUMEN

Background: Tumor metastasis to lymph nodes posterior to the right recurrent laryngeal nerve (LN-prRLN) is a main cause of disease recurrence in patients with papillary thyroid carcinoma (PTC), which may increase the risk of recurrence and secondary surgery, and the disruption of normal anatomical relationships during secondary surgery increases the risk of laryngeal nerve injury and hypoparathyroidism. However, controversy remains as to whether the dissection of LN-prRLN is required in cN0 PTC patients. The purpose of this study is to explore the factors associated with LN-prRLN metastasis in patients with cN0 PTC and the need for LN-prRLN node dissection in patients with cN0 PTC who undergo right central compartment dissection. Methods: The clinical data of 290 patients with cN0 PTC who received radical thyroid cancer surgery from December 2019 to March 2022 at our center were retrospectively analyzed. All the patients underwent thyroid lobectomy and right central lymph node dissection (CLND), along with other treatments. SPSS 26.0 statistical software was used for the analysis. The measurement data were compared using the rank-sum test, and the count data were compared using the chi-square test. Results: LN-prRLN metastasis was detected in 65 (22.4%) of the 290 cN0 PTC patients. The metastasis sites included level VIa (51.72%), the left central compartment (22.76%), and the prelaryngeal compartment (8.97%). The univariate analysis revealed that tumor multifocality, a tumor diameter >1 cm, capsular invasion, LN metastasis in the left central compartment, and level VIa positivity were influencing factors of LN-prRLN metastasis in PTC patients. The logistic regression analysis showed that a tumor diameter >1 cm (OR =2.897, 95% CI: 1.630-5.147, P<0.001), LN metastasis in the left central compartment (OR =3.724, 95% CI: 2.039-6.801, P<0.001), and level VIa (OR =3.405, 95% CI: 1.846-6.281, P<0.001) positivity were independent risk factors of LN-prRLN metastasis in PTC patients. Conclusions: The high-risk factors of LN-prRLN metastasis in cN0 PTC patients include a large tumor (a diameter >1 cm), lymph node metastasis in the left central compartment, and lymph node metastasis in level VIa. For patients with cN0 PTC undergoing right CLND, with high-risk factors of LN-prRLN metastasis, LN-prRLN dissection is recommended. Keywords: Papillary thyroid carcinoma (PTC); lymph nodes posterior to the right recurrent laryngeal nerve (LN-prRLN); central compartment lymph node dissection; risk factor.

18.
Mediterr J Hematol Infect Dis ; 14(1): e2022033, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615329

RESUMEN

Background: COVID-19 is characterized by endothelial dysfunction and is presumed to have long-term cardiovascular sequelae. In this cross-sectional study, we aimed to explore the serum levels of endothelial biomarkers in patients who recovered from COVID-19 one year after hospital discharge. Methods: In this clinical follow-up study, 345 COVID-19 survivors from Huanggang, Hubei, and 119 age and gender-matched medical staff as healthy controls were enrolled. A standardized symptom questionnaire was performed, while electrocardiogram and Doppler ultrasound of lower extremities, routine blood tests, biochemical and immunological tests, serum soluble vascular cell adhesion molecule-1(VCAM-1), intercellular cell adhesion molecule-1(ICAM-1), P-selectin, and fractalkine were measured by enzyme-linked immunosorbent assays (ELISA). Results: At one year after discharge, 39% of recovers possessed post-COVID syndromes, while a few had abnormal electrocardiogram manifestations, and no deep vein thrombosis was detected in all screened survivors. There were no significant differences in circulatory inflammatory markers (leukocytes, neutrophils, lymphocytes, C-reactive protein and interleukin-6), alanine aminotransferase, estimated glomerular filtration rate, glucose, triglycerides, total cholesterol and D-dimer observed among healthy controls with previously mild or severe infected. Furthermore, serum levels of VCAM-1, ICAM-1, P-selectin, and fractalkine do not significantly differ between survivors and healthy controls. Conclusions: SARS-CoV-2 infection may not impose a higher risk of developing long-term cardiovascular events, even for those recovering from severe illness.

19.
Sci Rep ; 12(1): 8896, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614183

RESUMEN

Forkhead-box-P family include FOXP1/2/3/4 and its clinical significance still remains unclear in breast cancer (BRCA). We analysed the expressions of FOXPs in BRCA patients to determine diagnostic and prognostic values. Our results indicated that the transcriptional levels of FOXP3/4 were up-regulated in BRCA patients, but FOXP2 were down-regulated. No statistically significant correlation were found between the expression levels of FOXPs in Pathologic stage. FOXP2/3 had a significantly high AUC value in the detection of breast cancer, with 96.8% or 95.7% in accuracy respectively. Our study also suggested that BRCA patients with high transcription levels of FOXP1/2/4 were significantly associated with longer Overall Survival (OS). In contrast, BRCA patients with high transcription level of FOXP3 was not statistically related with OS. Our work revealed that FOXPs were closely related to the alteration of extensive immune checkpoints in breast invasive carcinoma. Additionally, FOXP3 has a significant positive correlation with PDCD1, CD274, CTLA4 and TMB in breast cancer, and FOXP3 expression showed a statistically significant correlation with infiltration of immune cells. Finally, we found that FOXP3 expression predicted the breast cancer cells response to anticancer drugs. Altogether, our work strongly suggested that FOXPs could serve as a biomarker for tumor detection, therapeutic design and prognosis.


Asunto(s)
Neoplasias de la Mama , Biomarcadores de Tumor/genética , Neoplasias de la Mama/metabolismo , Femenino , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Humanos , Pronóstico , Proteínas Represoras
20.
J Infect ; 84(5): 628-636, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35150766

RESUMEN

OBJECTIVE: Sepsis is the leading course of morbidity and mortality in critically ill patients. This study aimed to evaluate the predictive value of the platelet aggregation for mortality in patients with sepsis. In addition, the relationship between impaired mitochondria and the platelet aggregation was explored. METHOD: This was a prospective, observational cohort study. The platelet aggregation rate in response to adenosine diphosphate (ADP) was assessed. The primary outcome was 28-day mortality. Platelet mitochondrial parameters, including adenosine triphosphate(ATP), mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (mPTP) opening, were measured. Platelet mitochondrial ultrastructure was observed using transmission electron microscopy. RESULTS: 86 patients with 65 survivors and 21 non-survivors were enrolled. Platelets of non-survivors with sepsis were hyporesponsive to ADP, in terms of maximal aggregation rate (P < 0.001). Receiver operating characteristic curves analysis demonstrated that the AUC estimated 28-day mortality for platelet aggregation rate was 0.814. At the optimal cut-off value of 35.8% for platelet aggregation rate, the sensitivity was 86.2% and the specificity was 66.7%. Kaplan-Meier analysis showed that a platelet aggregation rate of less than 35.8% was associated closely with poor survival. After adjusting for lactate by Cox regression analysis, platelet aggregation rate was identified as an independent predictor for the probability of 28-day mortality. Compared with survivors, non-survivors showed a significant reduction in platelet ATP and MMP-index (both P < 0.001), and a remarkable increase in mPTP opening (P < 0.001). ATP and MMP-index were positively correlated with platelet aggregation rate (R square=0.75, R square=0.44, respectively). CONCLUSION: Platelet aggregation rate could be an early predictive biomarker for mortality in sepsis. Impaired platelet mitochondrial activity affects platelet aggregation and correlates with the severity of sepsis.


Asunto(s)
Sepsis , Humanos , Adenosina Difosfato , Adenosina Trifosfato , Pronóstico , Estudios Prospectivos , Curva ROC
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...